# Credit # https://github.com/ravenkls/MilkPlayer/blob/master/audio/fft_analyser.py import time from PyQt5 import QtCore from pydub import AudioSegment import numpy as np from scipy.ndimage.filters import gaussian_filter1d from logging import debug, info class FFTAnalyser(QtCore.QThread): """Analyses a song using FFTs.""" calculatedVisual = QtCore.pyqtSignal(np.ndarray) calculatedVisualRs = QtCore.pyqtSignal(np.ndarray) def __init__(self, player, x_resolution): # noqa: F821 super().__init__() self.player = player self.reset_media() self.player.currentMediaChanged.connect(self.reset_media) self.resolution = x_resolution # this length is a number, in seconds, of how much audio is sampled to determine the frequencies # of the audio at a specific point in time # in this case, it takes 5% of the samples at some point in time self.sampling_window_length = 0.05 self.visual_delta_threshold = 1000 self.sensitivity = 10 def reset_media(self): """Resets the media to the currently playing song.""" audio_file = self.player.currentMedia().canonicalUrl().path() # if os.name == "nt" and audio_file.startswith("/"): # audio_file = audio_file[1:] if audio_file: try: self.song = AudioSegment.from_file(audio_file).set_channels(1) except PermissionError: self.start_animate = False else: self.samples = np.array(self.song.get_array_of_samples()) self.max_sample = self.samples.max() self.points = np.zeros(self.resolution) self.start_animate = True else: self.start_animate = False def calculate_amps(self): """Calculates the amplitudes used for visualising the media.""" sample_count = int(self.song.frame_rate * self.sampling_window_length) start_index = int((self.player.position() / 1000) * self.song.frame_rate) # samples to analyse v_sample = self.samples[start_index : start_index + sample_count] # Use a window function to reduce spectral leakage window = np.hanning(len(v_sample)) v_sample = v_sample * window # use FFTs to analyse frequency and amplitudes fourier = np.fft.fft(v_sample) freq = np.fft.fftfreq(fourier.size, d=self.sampling_window_length) amps = 2 / v_sample.size * np.abs(fourier) data = np.array([freq, amps]).T # TEST: # print(freq * .05 * self.song.frame_rate) # NOTE: # given 520 hz sine wave # np.argmax(fourier) = 2374 # freq[2374] * .05 * self.song.frame_rate = 520 :O omg! thats the hz value # x values = freq * self.song.frame_rate * self.sampling_window_length point_range = 1 / self.resolution # Logarithmic frequency scaling min_freq = np.min(freq[freq > 0]) # minimum positive frequency # print( # f"min freq: {min_freq * self.sampling_window_length * self.song.frame_rate}" # ) # 20hz max_freq = np.max(freq) # maximum frequency # print( # f"max freq: {max_freq * self.sampling_window_length * self.song.frame_rate}" # ) # 23khz log_freqs = np.logspace(np.log10(min_freq), np.log10(max_freq), self.resolution) point_samples = [] if not data.size: return # for i, freq in enumerate(np.arange(0, 1, point_range), start=1): for i, log_freq in enumerate(log_freqs): # get the amps which are in between the frequency range # amps = data[(freq - point_range < data[:, 0]) & (data[:, 0] < freq)] amps = data[(log_freq - point_range < data[:, 0]) & (data[:, 0] < log_freq)] if not amps.size: point_samples.append(0) else: point_samples.append( amps[0][1].max() # BINK!!!!!!!!!!!!! * ( ((1 + self.sensitivity) / 10 + (self.sensitivity - 1) / 10) ** (i / 50) ) ) # Add the point_samples to the self.points array, the reason we have a separate # array (self.points) is so that we can fade out the previous amplitudes from # the past for n, amp in enumerate(point_samples): # amp *= 2 if self.player.state() in ( self.player.PausedState, self.player.StoppedState, ): # More aggressive decay when no audio is playing self.points[n] *= 0.7 # Faster fade out when paused/stopped elif amp < self.points[n]: # Faster fade for frequencies that are decreasing self.points[n] = self.points[n] * 0.8 + amp * 0.2 # Smoother transition else: # Rise quickly to new peaks self.points[n] = amp # print(f'amp > points[n] - {amp} > {self.points[n]}') # Set a lower threshold to properly reach zero if self.points[n] < 1e-4: self.points[n] = 0 # print(self.points) # interpolate points rs = gaussian_filter1d(self.points, sigma=2) # divide by the highest sample in the song to normalise the # amps in terms of decimals from 0 -> 1 self.calculatedVisual.emit(rs / self.max_sample) # self.calculated_visual.emit(rs) # print(rs) # print(rs/self.max_sample) def run(self): """Runs the animate function depending on the song.""" while True: if self.start_animate: try: self.calculate_amps() except ValueError: self.calculatedVisual.emit(np.zeros(self.resolution)) self.start_animate = False time.sleep(0.033)